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Abstract. This paper proposes a saturated nonlinear PID controller
for industrial robot manipulators. Our controller considers the natural
saturation problem given by the output of the control computer, the sat-
uration phenomenon of the internal PI velocity controller in the servo
driver and the actuator torque constraints of the robot manipulators. An
approach based on the singular perturbation method is used to analyze
the local exponential stability of the closed-loop system. We obtain suf-

ficient conditions that allow us to achieve local regulation at a desired
joint position.
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1 Introduction

It is well known that industrial robots are equipped with PID controllers, that
practically assure the semiglobal asymptotic stability of the closed-loop equilib-
rium for the regulation case [1]-[8]. Also, it is known that the real-life actuators
are unable to supply unlimited torque, and their output is bounded. This im-
plies physical constraints which if are not taken into account in the design of the
controller, can affect the stability and performance of the closed-loop system
(9]-{14].

Furthermore, industrial robots are equipped with a position control computer
which produces the commands of desired joint velocities. These commands are
bounded in the same way than the actuators output. In this work we consider
these two constraints to design our controller.

Several approaches have been proposed in the literature for the problem of
regulation case of robot manipulators with bounded inputs; different analyti-
cal frameworks and control objectives are considered. Some works have been
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Fig. 1. Scheme of a practical nonlinear PID controller with bounded torques for robot

manipulators.

reported to solve this problem [9]-[14]. Solutions without considering velocity
measurements with gravity compensation are treated in [12]. A full-state (po-
sition and velocity) feedback solution with adaptive-gravity compensation is
presented in (15]. More recently. new schemes dealing with the problem of robot
manipulators with bounded inputs have been presented: [16)-[20]. An adaptive
approach involving task-space coordinates considering the uncertainties of the

kinematic model of the robot manipulator is proposed in (18].

Some works that deal with global nonlinear PID regulators based on Lya-
punov and passivity theory have been reported in (21]-[24], but without consid-
ering the influence of the saturation phenomenon.

A few saturated PID controllers have been reported; for the case of semiglobal
asymptotic stability, a saturated linear PID controller was presented in [19]
and [20]; for the case of global asymptotic stability, saturated nonlinear PID
controllers were introduced in [25] and [26].

In this paper, we propose a new saturated nonlinear PID regulator for robot
manipulators. The structure of this new proposed controller is closer to the
structure of the practical PID controllers used in the industry. Fig. 1 shows the
scheme that we consider to design our saturated nonlinear PID controller where
it clearly shows the constraints over the input and output commands of the servo
driver. We use a proportional controller as external position control and a joint
velocity PI controller which is intrinsic in the servo drivers of the actuators of
the robot manipulators.

We employ the singular perturbation theory to analyze local exponential
stability of the equilibrium of the closed-loop system.

Throughout this paper, we use the notation Amin{A(x)} and Amax{A(z)}
to indicate the smallest and largest eigenvalues, respectively, of a symmetric
positive definite bounded matrix A(z), for any z € R". Also, we define Amin{A}
as the greatest lower bound (infimum) of Amin{A(z)}, for all z € R", that
is, Amin{A} = infpe R Amin{A(z)}. Similarly, we define Amax{A} as the least

upper bound (supremum) of Amax{A(z)}, for all z € R", that is, Anax{A} =
SUPzcR" Amax{A(z)}. The norm of vector x is defined as ||z|| = VaTz and
that of matrix A(z) is defined as the corresponding induced norm ||A(z)|| =

Vma{ A()T A(z)}.
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2 Preliminaries

2.1 Robot dynamics
The dynamics of a serial n-link rigid robot, without the effect of friction, can be
written as [27):

M(@)§+C(g.9)a+g(@) =T (1)

where g € IR" is the vector of joint positions, § € IR™ is the vector of joint ve-
locities, 7 € IR" is the vector of applied torques, M(q) € R"*" is the symmetric
positive definite manipulator inertia matrix, C(q,q) € R™*" is the matrix of

centripetal and Coriolis torques and g(g) € IR" is the vector of gravitational
torques obtained as the gradient of the robot potential energy U(q), i.e.

au(
(q) = a—q"). (2)

We assume that all the joints of the robot are revolute type.
2.2 Properties of the robot dynamics
We recall two important properties of dynamics (1) which are useful in our paper:

Property 1. The matrix C(q,q) and the time derivative N (q) of the inertia
matrix satisfy (28], [29]:

w1, ] -
qT[§M(q)—C(q,q)]q=0 Vq.qeR".

°
Property 2. The gravitational torque vector g(g) is bounded for all ¢ € R".

This means that there exist finite constants «; > 0 such that [30}:
sup Ig'(QH S'yl i= 11"')"1 (3)
geR"
where g;(q) stands for the elements of g(gq). Equivalently, there exists a constant
K such that

llg(g)ll < &' forall ge R".

Furthermore there exists a positive constant kg such that

for all ¢ € R", and

llg(x) — gyl < kgllz - yll,

for all z,y € R".
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2.3 Problem formulation

Before presenting the formulation of the control problem, we recall some useful
definitions.
Definition 1. The hard saturation function is denoted in this work by sat(x; k) €
IR"™, where

sat(z;;kx) 1 k1

sat(z2; k2) T2 k2
sat(z; k) = s yez=| .|, k= .1,

sat(Zn;kn) Tn kn

with k; being the i-th saturation limit, ¢ = 1,2,...,n, and each element of
sat(z; k) is defined as:

z; if|zi| < ki
sat(zi; ki) =S ki ifxi > k;
—k; if z; < —k;

©

Furthermore, the control scheme proposed in this paper involves special sat-
uration functions that fits into the following definition.
Definition 2. [16] Given positive constants ! and m, with | < m, a function
Sat(z;l,m): R—-R:z— Sat(z;l, m) is said to be a strictly increasing linear
saturation function for (I,m) if it is locally Lipschitz, strictly increasing, C?
differentiable and satisfies:

1) Sat(z;l,m) = z when |z| < I
2) |Sat(z;l,m)| < m for all z € R. °

For instance, the following saturation function is a special case of a linear
saturations given in Definition 2, i.e.:

—l+(m—l)ta.nh(’—+' ifr< -l

m-1
Sat(z;l,m)={ z if |z| <1 (4)
z+(m-z)tanh(;—-},) ifz>1

The n-saturation functions are joined together in an n x 1 saturation function
vector denoted by Sat(z;l,m), i.e.,

Sat(z1; 1, m1)
Sat(z2; la,m2)
Sat(z;l,m) =

Sat(zn;ln, mn)
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where x,l,m € R", that is,

) L m

T2 l2 ma
z=|.|,l=].]|],m=

ZTn ln my

Consider the robot dynamic model (1). Assume that each joint actuator is
able to supply a known maximum torque 7/"*% so that:

IT(]ST{““, i=l,...,n

(5)

where 7; stands for the i-entry of vector 7. In other words, if u; represents the
control signal (controller output) before the actuator, related to the ith-joint,
then Ui

=), ©
for ¢ = 1,...,n, where sat(-) is the standard hard saturation function. We also
assume:

Ti = 7{"*sat

Assumption 1. The maximum torque 7/** of each actuator satisfies the fol-
lowing condition:

> ™

where ; was defined in Property 2, with i = 1,2, ...,n. °

This assumption means that the robot actuators are able to supply torques
in order to hold the robot at rest for all desired joint position g, €R".

The control problem is to design a controller, under model uncertainty, to
compute the torque 7 € R™ applied to the joints, satisfying the constraints (5),

such that the robot joint positions q tend asymptotically toward the constant
desired joint positions q,.

3 The proposed control scheme

In this section we present a nonlinear PID controller which can be seen as a
practical version of the classical PID control of robot manipulators.

As shown in Fig. 1, the proposed controller is formed by two loops: an outer
joint position proportional P loop and an inner joint velocity proportional-
integral PI loop. Without considering the actuator saturation effects, in [32],
it was proven that an outer loop position P controller (according to Fig. 1,
vg = Kp_q) together with an inner velocity PI controller (according to Fig. 1,

=K, 9+ K, f[; ¥(r)dr) conform a classical PID controller, that is:

T=Kpyq+ Kiw - K.q
¢
w =/ q(r)dr
0
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where Kp = Kp,Kp, + Ki,y Ko = Kpyy Ki = Ki Ky, € IR™™™ are diagonal
positive definite matrices, § = a4 — g € IR™ is the position error vector and
? = vq — ¢ € R" is the velocity error vector.

However, in the real applications the commands supplied by the computer
(position P loop) are limited by intrinsic constraints of the electronic devices,
and the servo—drivers (velocity PI loop) and the actuators are unable to supply
unlimited torques, so we must take into account these constraints in the closed-

loop stability analysis.
To this end, consider that, according to Fig. 1, the position controller imple-

mented by the computer is given by

va = aSat(Kp §;lp, mp), (8)

where K, € R™*" is a diagonal positive definite matrix whose elements are
kp., with i = 1,2..n, a is a small positive constant suitably selected and
Sat(Kp.g; lp, mp) is a saturation function defined in Definition 2 for some (l,, m,),
where I, and m,, are vectors whose elements are [, and mp,, respectively, with

1= 1,2,...,71.
The joint velocity PI controller, in practice, is naturally implemented into

the servo—drivers as: ,
7" =K, o+ K.‘,/ u(r)dr 9)
0

where Kp,, Ki, € R™" are diagonal positive definite matrices, and  is the
joint velocity error vector given by

V=v4—¢
= aSat(Kp.§;lp,mp) — 4, (10)

Substituting (10) in (9) we obtain

t
7" = aKp,Sat(Kp.§;lp,mp) — Kp, 4 + Kiy / [oSat(Kpq(r);lp, mp) — ¢(r)]dr
0

which has the form of the nonlinear PID global regulator in [21], [23], that is,

t
7 = K,Sat(Kp i bp ) — Ko +K: / [aSat(Kp.d(r)i lpy my) — 4(r)dr,
0

with

Kp = aKpd,
Ku = Kpd,
Ki: = K;,,
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where Kp, Ky, K; € R™ ™ are diagonal positive definite matrices whose ele-
ments are kp,, ky,, ki, respectively, with i = 1,2...n.

Finally, due to the servo-drivers and the torque actuators are physically lim-

ited, the nonlinear PID controller naturally results in a nonlinear PID controller
with bounded torques given by

T = Sat [K;Sat (Kp.q; lp,mp) — Kug + w) ilpiympi) (11)
t
w= K.-f [aSat(Kp.q(r);lp, mp) — q(r))dr
0

where Sat [KSat (Kp.3;lp, m;) — K@ + w;ly, ) is a vector whose elements
are strictly increasing linear saturation functions such as those in Definition 2,
for some (lpi, mMpi), where l,; and my; are vectors whose elements are lpi, and
Mpi, respectively, with i = 1,2,...,n, satisfying the following assumption.
Assumption 2: The saturation limits of the P and the PI loops satisfy:

Vi <lp, <mp, <lpiy < Mpi; < T2 (12)

°
Remark: In the practice, the saturation constraints of the electronic devices and

the actuators are in fact, hard saturations like those in Definition 1. However,
with the end of carrying out the stability analysis, they can be approximated by

linear saturation functions like those defined in Definition 2 with ! <mand |
arbitrarily close to m.

In order to simplify the notation, henceforth, we will omit the limits of the
saturation functions.

4 Main Result

4.1 Closed-loop system

By substituting (11) into the robot dynamics (1), we obtain
q -q
d | . s - : e
5 | 4 |=|M (@)™ (Sat [K;Sat (K@) - Kug +w] - C(g,d)q-g(@)] | (13)
w Ki[oSat (Kp.q) - g

which is an autonomous differential equation with an unique equilibrium point

given by [ ¢* w” )" = (0T 0T g(g,)T)" € R*", where we have used the
Assumption 2, that is, l,;, > ¥; to get that Sat(w)-g(q,) = 0 & w = g(g,). In
order to move the equilibrium point of (13) to the origin, we apply the following
change of variables ¢ = w — g(g,). Now the new closed-loop system is given by:

@ -4
& a =M@ 1sat 1K,Set (6.8 - K+ 2+ 9la0) - Clad) 4~ a)

B Ki[oSat (K,.§) - 4] (19)
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The previous closed-loop system can be studied as a singularly perturbed
system. To this end, by choosing the integral gain matrix as I(; = €K, where
K is a diagonal positive definite matrix and € > 0 is a small parameter and
letting ¢ = et be a new time-scale (' is slow time compared to t), the system
(14) can be described as a two first-order differential equations as follows:

%z = K7 [aSat (Kp.3) — 4] (15)
a|? 4 ]
‘ar fa| T I:M (q)~" [Sat [KpSat (Kp.q) - Keq+ T +9(q4)] - C (2. @) d ~ g (q)]

(16)

Our main contribution is summarized in the following
Proposition 1. Consider the robot dynamics (1) in closed-loop with the prac-
tical saturated PID control law (11). Under Assumption 2, and

kplp, > |7i+9:(q0)—9:(24—3), VG €R, i=1,2,...,m,
Amin{KpKp.} > kg
Amin{Ip} > kn
N 2k’ # o :
¢ = ——2k _——— the origin of the closed-loop system (15)-(16) is
with kn Sav.(“ X ‘“,M":)) € orig p Sy (15)—(16)
locally exponentially stable, and therefore, the equilibrium point of (13) is lo-
cally exponentially stable. Besides |7;(t)|] < 7/*** foralli=1,2,..,nand t > 0.0

Proof. By following similar steps to those given in [20], by means of the singular
perturbation theory {31], it is possible to prove Proposition 1.

5 Conclusions

In this paper, we propose a saturated nonlinear PID controller which, in fact,
results from the practical implementation of the classical PID controller, by
considering the natural saturations of the electronics of the control computer and
of the servo drivers, and the actuator torque constraints. The stability analysis
of the closed-loop system can be carried out by using the singular perturbation
theory; thus, we conclude local exponential stability of the equilibrium point of
the closed-loop system. It is also guaranteed that, regardless of initial conditions,
the delivered actuator torques evolve inside permitted limits.
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